Centrifugal Microfluidics for Nanobiotechnology

Centrifugal Microfluidics for Nanobiotechnology

$23.49
Description
Since the inception of lab-on-a-chip (LOC) and micro-total-analysis-systems (μTAS) concepts, a diverse array of microsystems founded on microfluidics has been introduced. Among these, centrifugal microfluidics emerges as particularly noteworthy, showcasing several distinctive advantages over alternative forms. Its most pronounced merit lies in its divergence from the necessity for intricate tubes or pumps in controlling solution flow, a departure from the complexities inherent in other microfluidic devices. This characteristic streamlines device design and fabrication, thereby amplifying data reproducibility through the elimination of manual interventions.
For several years, my research has focused on microdevices for genetic diagnostics grounded in various driving forces such as electrokinetic and hydrodynamic forces. The challenges encountered in establishing consistent conditions for the same chip, stemming from complications in creating tube connection part on a chip, managing multiple tubes for sample in-and-out, and addressing irregular pump operations, have prompted a search for more efficient solutions. In this context, centrifugal microfluidics has proven invaluable, effortlessly executing fundamental unit operations such as volume splitting, solution merging, passive valving, and flow switching solely through rotational force and direction. This capability, coupled with straightforward microfluidic design and surface treatment, underscores the practicality of centrifugal microfluidics.
Within our specialized genetic diagnostics research lab, centrifugal microfluidics was initially introduced for genomic extraction in 2008. Subsequent developments encompassed various forms of genetic diagnostic centrifugal microfluidics, including polymerase chain reaction, isothermal amplification, a lateral flow strip assay, and a solution-loading cartridge facilitating the entire process from sample loading to diagnosis. Additionally, our lab has expanded its focus to high-throughput immuno-diagnostics and nanoparticle synthesis using centrifugal microfluidics, culminating in a high-throughput concept capable of concurrently processing up to 40 samples in a single device, offering a distinct advantage over other microfluidic forms.
Collating our laboratory's published papers, I organized them into ten chapters. The central theme of this book revolves around two primary applications of centrifugal microfluidic technologies: genetic analysis and nanoparticle synthesis. These sections distinguish themselves through their depth and detail, providing a comprehensive examination of the processes from both theoretical and practical perspectives. Each chapter intricately dissects device design, operational principles, and the unparalleled efficiency of centrifugal microfluidics in molecular diagnostics and nanoparticle synthesis.
It is my hope that this work stimulates contemplation among readers regarding the potential impacts of these technologies across various sectors, particularly in the field of nanobiotechnology. With its resonance within both the scientific community and industry practitioners, the book can offer insights into how centrifugal microfluidics is shaping the future of rapid and accurate biomedical diagnostics, contributing significantly to global health strategies, as well as exploring novel smart nanomaterials for the future.
저자

TaeSeokSeo지음

Dr.TaeSeokSeoisaProfessorofChemicalEngineeringatKyungHeeUniversity,SouthKorea.Heearnedhisbachelor'sdegreefromSeoulNationalUniversity,Korea(1996),andhismaster'sdegreefromKAIST,Korea(1998).HecompletedhisdoctoraldegreeatColumbiaUniversity,USA(2004),wherehedevelopedanext-generationsequencingtechnology.Subsequently,hemovedtoUCBerkeley,USAasapost-doctoralresearcher(2007)andcontributedtopoint-of-caregeneticanalysisprojectsbasedonthelab-on-a-chiptechnique.
Dr.SeoheldafacultypositionatKAISTfrom2007andhasbeenatKyungHeeUniversitysince2016.Well-regardedforhisresearchinmicrofluidics,moleculardiagnostics,biosensors,flowchemistry,andnanobiotechnology,Prof.TaeSeokSeohasauthoredover150scientificpapersandholdsmorethan60patents,inadditiontofacilitating8technologytransferstoventurecompanies.HisnotablerecognitionsincludeExcellentResult100inNationalResearch,KAISTTechnologyInnovationAward,andtheBestIndustrialTechnicalMinisterAward,etc.HelivesinSuwonwithhiswifeandfourchildren.Heenjoysgolfing,meditating,andparticipatinginCatholicreligiousactivities.

목차

Preface1
Acknowledgements3
Chapter1.CentrifugalMicrofluidicDeviceforSamplePretreatment 8
1.Background 8
2.ChipDesign 9
2.1.Alow-throughputcentrifugalmicrofluidicchipforsamplepretreatment 10
2.2.Ahigh-throughputcentrifugalmicrofluidicchipforsamplepretreatment 13
3.Chipfabrication 14
4.Chipoperation 16
4.1.Principleofacentrifugalmicrofluidics 16
4.2.Operationofalow-throughputcentrifugalmicrofluidicchipforsamplepretreatment 17
4.3.Operationofahigh-throughputcentrifugalmicrofluidicchipforsamplepretreatment 19
5.Performanceofnucleicacidextraction 22
5.1.RNAextractiononalow-throughputcentrifugalmicrofluidicchip 22
5.2.DNAextractiononahigh-throughputcentrifugalmicrofluidicchip 24
6.Conclusion 26
References 27

Chapter2.CentrifugalMicrofluidicDeviceforPolymeraseChainReaction 30
1.Background 30
2.CentrifugalPCRchip 32
2.1.Materialforamicrofluidicchip 32
2.2.Chipdesign 33
2.3.Chipfabrication 34
3.CentrifugalPCRsystem 35
3.1.Rotationalmotor 35
3.2.Heater 36
3.3.Fluorescencedetection 38
4.Chipoperation 39
5.PerformanceofPCRonacentrifugalmicrodevice 40
6.Conclusion 43
References 43
Chapter3.CentrifugalMicrofluidicDeviceforIsothermalAmplification 45
1.Background 45
1.1.ALAMPreaction 46
1.2.AnRCAreaction 46
1.3.AnRPAreaction 47
2.Centrifugalchipforisothermalamplification 48
2.1.ChipdesignforLAMP 48
2.2.ChipdesignforRCA 49
2.3.ChipdesignforRPA 50
3.Chipfabricationprocess 52
4.Chipoperation 55
5.Performanceofisothermalamplificationonacentrifugalmicrodevice 60
6.Conclusion 66
References 67

Chapter4.ColorimetricLoop-mediatedIsothermalAmplificationReactiononaCentrifugalMicrofluidicDevice 71
1.Background 71
1.1.Colorimetricassayforgeneticanalysis 71
1.2.ColorimetricPCRandcolorimetricLAMP 72
1.3.PrincipleofEBT-basedcolorimetricdetection 74
2.CentrifugalmicrodeviceforcolorimetricLAMPreactions 75
2.1.Chipdesign 75
2.2.Chipfabrication 78
3.Chipoperation 79
4.Applicationforfood-bornepathogendetection 83
4.1.Monoplexdetectionofpathogen 83
4.2.Multiplexdetectionofpathogen 85
4.3.Limit-of-detectiontest 88
5.Conclusion 90
References 90

Chapter5.LateralFlowStripAssay-IncorporatedCentrifugalMicrofluidicDeviceforGeneticAnalysis 93
1.Background 93
1.1.Lateralflowstripassay 93
1.2.Principleofamplicondetectiononalateralflowstrip 95
2.Lateralflowassay-incorporatedcentrifugalmicrofluidicchip 97
2.1.DesignofaLAMP-lateralflowstripchip 97
2.2.Designofasamplepretreatment-LAMP-lateralflowstripchip 99
2.3.Chipfabrication 100
3.Chipoperation 102
4.Applicationofpathogendetection 104
4.1.VirusdetectiononaLAMP-lateralflowstripchip 105
4.2.Bacterialdetectiononasamplepretreatment-LAMP-lateralflowstripchip 108
5.Conclusion 111
References 112

Chapter6.CombinationofaSolution-loadingCartridgewithaCentrifugalMicrofluidicDevice 115
1.Background 115
2.Chipdesign 117
2.1.Designandfabricationofasolution-loadingcartridge 117
2.2.Designandfabricationofanintegratedcentrifugalmicrodevice 121
3.Developmentofaportablegeneticanalyzer 125
4.Chipoperation 129
5.Applicationofmultiplexpathogendetection 132
6.Conclusion 142
References 143

Chapter7.CentrifugalMicrofluidicDeviceforHigh-throughputGeneticAnalysis 147
1.Background 147
2.CentrifugalmicrofluidicchipforHTPgeneticanalysis 148
2.1.OveralldesignofacentrifugalHTPmicrofluidicchip 148
2.2.Asingleunit-centrifugalmicrofluidicschipwithmultiplereactionchambers 150
2.3.AcentrifugalHTPmicrofluidicschipwith10unitsforCOVID-19diagnostics 151
2.4.AcentrifugalHTPmicrofluidicschipwith30unitsforCOVID-19diagnostics 154
3.FabricationofacentrifugalHTPchip 155
4.ConstructionofaportableHTPgeneticanalyzer 157
5.Chipoperation 159
6.Applicationofpathogendetection 163
6.1.Asingleunit-centrifugalmicrofluidicschipwithmultiplereactionchambers 163
6.2.AcentrifugalHTPmicrofluidicschipwith10unitsforCOVID-19diagnostics 164
6.3.AcentrifugalHTPmicrofluidicschipwith30unitsforCOVID-19diagnostics 166
7.Conclusion 169
References 170

Chapter8.CentrifugalMicrofluidicDeviceforHigh-throughputEnzyme-linkedImmunosorbentAssay 173
1.Background 173
2.DesignofacentrifugalELISAHTPchip 175
3.Immobilizationofantibodyonamicrofluidicdevice 177
4.FabricationofacentrifugalELISAHTPchip 178
5.ConstructionofaportableHTPgeneticanalyzer 179
6.Chipoperation 181
7.ApplicationofCOVID-19detection 183
8.Conclusion 186
References 187

Chapter9.CentrifugalMicrofluidicDeviceforHigh-throughputNanoparticleSynthesis 189
1.Background 189
1.1.Limitationsoftraditionalnanoparticlesyntheticapproaches 189
1.2.Microfluidicsbasednanoparticlesynthesis 190
1.3.High-throughputnanoparticlesynthesisonamicrofluidicdevice 191
2.DesignofacentrifugalHTPchipfornanoparticlesynthesis 192
2.1.Azigzagaliquotstructureforefficientandrapids