FREE SHIPING FOR OVER $100 - MOSTLY SHIP VIA USPS GROUND ADVANTAGE %D days %H:%M:%S
이건명
지은이:이건명충북대학교소프트웨어학과교수
이론편CHAPTER1인공지능1.1인공지능이란1.2인공지능의역사1.2.11960년대이전1.2.21970년대에서1980년대초반1.2.31980년대중반에서1990년대1.2.42000년대이후1.3인공지능의연구분야1.3.1요소기술분야1.3.2주요응용분야1.4인공지능의최근동향1.5인공지능의영향1.6연습문제CHAPTER2탐색과최적화2.1상태공간과탐색2.1.1탐색문제2.1.2상태공간과문제해법2.2맹목적탐색2.2.1깊이우선탐색2.2.2너비우선탐색2.2.3반복적깊이심화탐색2.2.4양방향탐색2.3정보이용탐색2.3.1휴리스틱2.3.2언덕오르기방법2.3.3최상우선탐색2.3.4빔탐색2.3.5A*알고리즘2.4게임탐색2.4.1mini-max게임트리2.4.2가지치기2.4.3몬테카를로트리탐색2.5제약조건만족문제2.5.1백트랙킹탐색방법2.5.2제약조건전파방법2.6최적화2.6.1조합최적화2.6.2유전알고리즘2.6.3함수최적화2.6.4제약조건최적화문제2.6.5최소제곱평균법2.6.6경사하강법2.7연습문제CHAPTER3지식표현과추론3.1지식3.2규칙3.3프레임3.4논리3.4.1명제논리3.4.2술어논리3.5의미망3.5.1의미망의표현3.5.2의미망의추론3.6스크립트3.7온톨로지3.7.1온톨로지의정의3.7.2온톨로지의지식표현3.7.3시맨틱웹3.8함수에의한지식표현3.9불확실한지식표현3.9.1확신도를이용한규칙의불확실성표현3.9.2확률을이용한규칙의불확실성표현3.9.3퍼지이론3.9.4확률그래프모델3.10규칙기반시스템3.10.1추론3.10.2규칙기반시스템구조3.10.3규칙기반시스템개발도구3.11심볼그라운딩문제와프레임문제3.12CYC프로젝트3.13연습문제CHAPTER4기계학습4.1기계학습4.2기계학습의종류4.3기계학습대상문제4.3.1분류4.3.2회귀4.3.3군집화4.3.4밀도추정4.3.5차원축소4.3.6이상치탐지4.3.7반지도학습4.4결정트리4.4.1결정트리의형태4.4.2결정트리학습알고리즘4.4.3결정트리를이용한회귀4.5앙상블분류기4.5.1배깅알고리즘4.5.2부스팅알고리즘4.6k-근접이웃알고리즘4.7군집화알고리즘4.8단순베이즈분류기4.9신경망4.9.1퍼셉트론4.9.2다층퍼셉트론4.9.3RBF망4.10서포트벡터머신SVM4.10.1초평면기하학4.10.2SVM의학습4.10.3선형분리가되지않는데이터에대한SVM4.10.4비선형SVM과커널기법4.11강화학습4.11.1기대보상4.11.2가치함수4.11.3벨만방정식4.11.4동적계획법기반정책결정4.11.5강화학습의예측과제어4.11.6연속영역의가치함수근사와정책근사4.11.7DQN알고리즘4.11.8Actor-Critic방법4.11.9A3C알고리즘4.11.10역강화학습4.12전이학습4.13연습문제CHAPTER5딥러닝5.1딥러닝5.1.1기울기소멸문제5.1.2가중치초기값5.1.3과적합문제5.2컨볼루션신경망5.2.1컨볼루션5.2.2풀링5.2.3컨볼루션신경망의구조5.2.4컨볼루션신경망의학습5.2.5대표적인컨볼루션신경망모델5.2.6딥러닝신경망의전이학습5.3딥러닝생성모델5.3.1제한적볼츠만머신RBM5.3.2심층신뢰망DBN5.3.3대립쌍생성망GAN5.4재귀신경망5.4.1재귀신경망5.4.2ReLU활성화함수를사용하는재귀신경망5.4.3LSTM재귀신경망5.4.4GRU재귀신경망5.4.5재귀신경망의확장5.5오토인코더5.5.1특징추출오토인코더5.5.2잡음제거오토인코더5.5.3희소오토인코더5.5.4변분오토인코더5.6인코더-디코더망5.6.1단순인코더-디코더망5.6.2주목모델을포함한인코더-디코더망5.6.3주목메커니즘5.7메모리확장신경망모델5.7.1뉴럴튜링머신NTM5.7.2미분가능신경망컴퓨터DNC5.7.3메모리망MemoryNet5.7.4종단간메모리망MemN2N5.7.5동적메모리망DMN5.8딥러닝개발환경5.9연습문제CHAPTER6계획수립6.1계획수립6.2계획수립문제6.2.1고전적계획수립문제6.2.2마르코프결정과정문제6.2.3부분관측마르코프결정과정문제6.2.4다중에이전트계획수립문제6.3계획수립기6.4계획수립문제기술언어6.4.1STRIPS6.4.2PDDL6.5고전적계획수립방법6.6상태공간계획수립6.6.1전향탐색과후향탐색6.6.2STRIPS계획수립알고리즘6.6.3GraphPlan알고리즘6.7계획공간계획수립6.8계층적계획수립6.9연습문제응용편CHAPTER7데이터마이닝7.1데이터마이닝7.2데이터마이닝의과정7.3데이터마이닝대상7.4연관규칙마이닝7.4.1연관규칙마이닝알고리즘7.4.2연관규칙마이닝의응용분야7.5텍스트마이닝7.5.1텍스트마이닝의대상7.5.2감성분석7.5.3토픽모델링7.6그래프마이닝7.6.1빈발부분그래프7.6.2그래프검색7.6.3그래프분류7.6.4그래프군집화7.6.5그래프의키워드검색7.6.6그래프데이터의특징7.7추천7.7.1등수매기기알고리즘7.7.2추천알고리즘7.8시각화7.9연습문제CHAPTER8자연어처리8.1자연어의특성8.2한국어문법8.2.1형태론8.2.2통사론8.2.3음운론8.3형식문법8.3.1정규문법8.3.2문맥자유문법8.3.3문맥의존문법8.3.4무제약문법8.4자연어처리의분석단계8.5형태소분석과품사태깅8.5.1형태소분석8.5.2품사태깅8.5.3개체명인식8.6구문분석8.6.1규칙기반구문분석8.6.2기계학습기반구문분석8.7의미분석8.8단어의실수벡터표현8.8.1단어의벡터표현8.8.2CBOW모델8.8.3Skip-gram모델8.8.4계층적소프트맥스와반례표본추출8.8.5단어벡터표현의활용8.9딥러닝기반의자연어처리8.9.1언어모델8.9.2구와문장표현8.9.3기계번역8.10음성인식8.11연습문제CHAPTER9컴퓨터비전9.1컴퓨터비전의문제9.1.1컴퓨터비전의관련분야9.1.2컴퓨터비전의처리단계9.2영상표현9.3영상처리9.3.1이진화9.3.2히스토그램평활화9.3.3장면디졸브9.3.4컨볼루션연산과필터9.3.5에지검출Canny연산자9.3.6LOG필터9.3.7DOG연산9.3.8영상분할9.4특징추출9.4.1특징점9.4.2영상피라미드와스케일공간9.4.3블롭검출9.4.4SIFT특징점검출9.4.5특징기술자9.4.6HOG기술자9.4.7허프변환9.4.8매칭9.5컴퓨터비전의대상9.6객체위치검출및개체인식9.6.1R-CNN모델9.6.2YOLO모델9.6.3SSD모델9.7의미적영역분할9.8딥러닝응용9.8.1영상주석달기9.8.2예술작품화풍그림생성9.9연습문제CHAPTER10지능로봇10.1로봇10.1.1로봇의용도와분류10.1.2로봇기술분야10.1.3로봇응용분야10.2로봇시스템구성10.2.1물리적구성요소10.2.2소프트웨어적구성요소10.3기구학과동역학10.3.1기구학10.3.2동역학10.4센서와구동기10.4.1내부센서10.4.2외부센서10.4.3구동기10.4.4제어10.5구성요소간의통신방식10.5.1하드웨어요소간의통신10.5.2소프트웨어요소간의통신10.6로봇제어패러다임과구조10.6.1계층적패러다임10.6.2반응형패러다임10.6.3혼합형패러다임10.6.4로봇제어코드구현10.7로봇소프트웨어개발프레임워크10.8로봇계획수립10.9위치결정과지도작성10.9.1동시적위치결정과지도작성10.9.2칼만필터10.9.3파티클필터10.9.4SLAM알고리즘과라이브러리10.10항법10.11연습문제도구편CHAPTER11규칙기반시스템개발도구Jess11.1Jess11.2Jess설치11.3Eclipse설치및Jess연동11.3.1Eclipse설치11.3.2Eclipse와Jess연동11.4Jess프로그래밍11.4.1원소,수,문자열11.4.2리스트11.4.3변수11.4.4제어구조11.4.5함수11.4.6작업메모리관리11.4.7규칙11.4.8추론11.5Jess활용예제11.5.1clp파일1
인공지능의전통기술에서딥러닝까지최근인공지능은일상어가되어버렸다.인공지능이4차산업혁명시대의핵심기술이라고도한다.인공지능이미래를크게바꿀것이라고한다.인공지능때문에일자리가사라지고생존이위협받을수도있다고한다.요즘은비전공자가말하는인공지능이야기를더자주접하게된다.어떤때는공감하기어렵고,때로는잘못된이야기도듣는다이책은인공지능의전통적인기술에서최근의딥러닝까지인공지능의전문적인내용을소개한다.학부생부터심화된학습을하는대학원생이나연구자들도참고할수있도록전문적인수준까지다루고있다.이책의내용이책은핵심이론,응용,도구,부록편으로구성되어있다.이론편인1장부터6장까지는인공지능핵심이론이라할수있는탐색과최적화,지식표현과추론,기계학습,딥러닝,계획수립에대해서다룬다.응용편인7장부터10장까지는인공지능의주요응용분야라고할수있는데이터마이닝,자연어처리,컴퓨터비전,지능로봇에대해서소개한다.도구편인11장부터16장까지는실제실습해볼수있는도구들로써규칙기반시스템개발도구인Jess,기계학습및데이터마이닝도구인Weka,딥러닝프레임워크인텐서플로우(TensorFlow),텍스트처리를위한파이썬패키지,컴퓨터비전라이브러리OpenCV,그리고로봇소프트웨어개발프레임워크ROS를소개한다.도구편은직접실습을해볼수있도록도구사용방법뿐만아니라실제동작하는다수의프로그램을포함하고있다.부록에서는이론이해및수식전개에서필요한기본적인확률이론과선형대수학에대해서소개한다.다루는주제가많아한학기강의에서는전체내용을다룰수없다.학부인공지능강의,대학원딥러닝강의및기계학습강의를위한권장주제를뒤에첨부해두었다.