FREE SHIPING FOR OVER $100 - MOSTLY SHIP VIA USPS GROUND ADVANTAGE %D days %H:%M:%S
온다미노루,쿠마다칸,모리타카즈아키
저자:온다미노루 KDDI애자일개발센터주식회사테크에반젤리스트.외국계SIer에서인프라SE(시스템엔지니어)로근무한후,2019년에KDDI주식회사에경력입사하여정보시스템부문에서다수의업무시스템AWS이전(마이그레이션)을경험했습니다. 저자:쿠마다칸 주식회사Relic첨단기술연구개발리드.엔지니어로인프라설계및구축,운영및유지보수업무에종사한후,2021년에주식회사Relic에입사했습니다.다수의프로젝트를넘나들며서비스의신뢰성향상,보안의균질화/최적화,표준화에참여했습니다. 저자:모리타카즈아키 후지소프트주식회사에반젤리스트·아키텍트.업무시스템개발및모바일앱개발경험을거쳐,2015년경부터클라우드및AWSLambda로대표되는서버리스아키텍처에관심을갖게되었습니다.AWS의에반젤리스트겸아키텍트로활동중입니다. 역자:김영진 SeniorSolutionsArchitect.소프트웨어개발자,DevOps엔지니어및소프트웨어아키텍트의경험을통해엔터프라이즈고객이높은수준의아키텍처설계선택을하고AWS서비스를사용하여비즈니스로직을구성할수있도록도움을드리고있습니다.현재AWSAIMLTFC활동및AWS기술블로그운영을리딩하고있으며,엔터프라이즈기업들의AWS클라우드전환을지원하는업무를담당하고있습니다. 역자:임연욱 SolutionsArchitect.엔터프라이즈고객들이AmazonBedrock을활용하여비즈니스가치를극대화할수있도록돕는AgenticAI전문가입니다.복잡한비즈니스문제를해결하기위한AI에이전트설계및구축을지원하며,생성형AI기술의도입부터아키텍처설계까지전과정에걸쳐깊이있는기술컨설팅을제공하고있습니다. 역자:김기철 SolutionsArchitect.고객의요구사항을도출하고다양한개발경험과모범사례를바탕으로효율적인아키텍처를제안하는역할을수행하고있습니다.현재는생성형AI를이용한자동화시스템구축을위한기술적인도움을드리고자노력하고있습니다. 역자:김휘경 SeniorSolutionsArchitect.대규모프로덕션환경에대한운영,설계및구축을한경험을바탕으로고객들의워크로드에적합한AWS클라우드아키텍처를제안하며,고객들의기술적인고민을해소할수있도록돕는역할을하고있습니다.
1.1‘생성형AI’란무엇인가?__1.1.1인공지능(AI)과생성형AI의위치__1.1.2생성형AI의‘모델’이란__1.1.3‘모델’에관한기초지식1.2유명한생성형AI제품__1.2.1ChatGPT__1.2.2StableDiffusion__1.2.3GitHubCopilot1.3생성형AI용API제공및클라우드로배포__1.3.1생성형AI모델용API__1.3.2클라우드에서제공되는생성형AI모델의API▣02장:AmazonBedrock입문2.1AmazonBedrock이란__2.1.1Bedrock의장점__2.1.2지원되는AWS리전__2.1.3Bedrock모델이용요금2.2왜AWS의Bedrock을선택해야할까?__2.2.1(1)AWS의강점을대부분활용가능__2.2.2(2)여러기업이제공하는최신모델을폭넓게이용가능__2.2.3(3)애플리케이션개발의높은편의성__2.2.4(4)엔터프라이즈레벨의보안과거버넌스제공2.3Bedrock에서사용할수있는생성형AI모델__2.3.1모델의종류__2.3.2Bedrock의추천모델2.4Anthropic의생성형AI모델__2.4.1Anthropic의모델의특징__2.4.2Claude3시리즈2.5Cohere의생성형AI모델__2.5.1Cohere의모델특징__2.5.2CommandR시리즈__2.5.3EmbedEnglish/Multilingual2.6StabilityAI의생성형AI모델__2.6.1StabilityAI의모델특징__2.6.2StableDiffusion3.5Large2.7Amazon의생성형AI모델__2.7.1Amazon모델의특징__2.7.2AmazonNova인식모델__2.7.3AmazonNova크리에이티브콘텐츠생성모델2.8Meta의생성형AI모델__2.8.1Meta모델의특징__2.8.2Llama3.32.9MistralAI의생성형AI모델__2.9.1MistralAI의모델의특징__2.9.2MistralLarge2/Small2.10AI21Labs의생성형AI모델__2.10.1AI21Labs의모델의특징__2.10.2Jamba1.5Large2.11[핸즈온]Bedrock실제로사용해보기__2.11.1플레이그라운드를통해GUI환경에서생성하는방법__2.11.2AWSSDK를사용해서각모델API요청을보내는방법▣03장:생성형AI애플리케이션개발방법3.1프롬프트란__3.1.1프롬프트작성법__3.1.2프롬프트의종류3.2토큰이란__3.2.1문자열을토큰으로분할하기__3.2.2토큰수계산방법3.3프롬프트엔지니어링이란__3.3.1프롬프트엔지니어링가이드라인__3.3.2모델활성화하기__3.3.3명확한작업설정하기__3.3.4문서제공하기__3.3.5구체적인지침설정하기__3.3.6예시를제공하기__3.3.7단계별사고유도하기__3.3.8기타프롬프트엔지니어링기법3.4생성형AI앱개발에사용하는주요프레임워크__3.4.1생성형AI프레임워크의활용__3.4.2LangChain__3.4.3Streamlit3.5LangChain과Streamlit을이용한생성형AI앱개발__3.5.1개발환경준비__3.5.2[스텝1]LangChain구현하기__3.5.3[스텝2]스트림출력__3.5.4[스텝3]Streamlit연동하기__3.5.5[스텝4]연속적인채팅대화구현하기__3.5.6[스텝5]채팅기록유지하기3.6AWSLambda에서실행되는생성형AI앱개발__3.6.1AWSLambda를활용한생성형AI앱__3.6.2활용사례__3.6.3개발환경구성__3.6.4구현내용__3.6.5Lambda레이어만들기__3.6.6Lambda함수생성하기3.7생성형AI앱개발에사용하는그외의프레임워크__3.7.1LlamaIndex__3.7.2Gradio__3.7.3Chainlit__3.7.4Dify__3.7.5LiteLLM▣04장:사내문서검색RAG애플리케이션을만들어보자4.1RAG란?__4.1.1RAG의특징과유스케이스__4.1.2의미검색을가능하게하는‘임베딩’__4.1.3RAG아키텍처의구현예시4.2[핸즈온]지식기반으로RAG를구현해보자__4.2.1지식기반의구조__4.2.2지식기반을활용한RAG애플리케이션개발의개요__4.2.3S3버킷생성하기__4.2.4KnowledgeBase생성하기__4.2.5모델활성화하기__4.2.6지식기반단독동작확인하기__4.2.7프론트엔드구현하기__4.2.8RAG애플리케이션실행하기__4.2.9불필요한리소스의삭제방법__4.2.10지식기반을지원하는생성형AI모델__4.2.11지식기반의쿼리설정__4.2.12지식기반의이용요금4.3RAG용검색대상서비스소개__4.3.1이섹션에서소개하는서비스목록__4.3.2AmazonOpenSearchService(벡터DB/AWS서비스)__4.3.3AmazonOpenSearchServerless(벡터DB/AWS서비스)__4.3.4AmazonAurora&AmazonRDS(벡터DB/AWS서비스)__4.3.5AmazonDocumentDB(벡터DB/AWS서비스)__4.3.6AmazonMemoryDBforRedis(벡터DB/AWS서비스)__4.3.7Pinecone(벡터DB/AWSMarketplace제품)__4.3.8RedisEnterpriseCloud(벡터DB/AWSMarketplace제품)__4.3.9MongoDBAtlas(벡터DB/AWSMarketplace제품)__4.3.10AmazonKendra(기타/AWS서비스)__4.3.11AmazonDynamoDB(기타/AWS서비스)__4.3.12AmazonS3(기타/AWS서비스)4.4추천RAG아키텍처예시__4.4.1일단시험해보기&저비용운영__4.4.2답변품질중시__4.4.3데이터소스와의연결성중시4.5RAG의답변품질을높이기위한방법__4.5.1청크사이즈의조정__4.5.2메타데이터추가__4.5.3리랭크__4.5.4RAG퓨전__4.5.5Rewrite-Retrieve-Read__4.5.6HyDE(HypotheticalDocumentEmbeddings)__4.5.7기타새로운방법4.6RAG애플리케이션의평가도구__4.6.1Ragas__4.6.2LangSmith__4.6.3Langfuse▣05장:편리한자율형AI에이전트만들기5.1AI에이전트란__5.1.1도구를사용하는AI에이전트__5.1.2고도화된AI에이전트구현방식‘ReAct’란?__5.1.3오픈소스AI에이전트__5.1.4AI에이전트의유스케이스5.2[핸즈온]LangChain에서AI에이전트를구현해보기__5.2.1사전준비__5.2.2핸즈온①툴을이용하는AI에이전트__5.2.3핸즈온②ReAct에이전트5.3AgentsforAmazonBedrock이란__5.3.1AgentsforAmazonBedrock의개요__5.3.2Agents의구조__5.3.3Agents의상세__5.3.4지원모델과리전__5.3.5Agents의사용요금5.4[핸즈온]Agents로AI에이전트를만들어보자__5.4.1이장에서개발하는AI에이전트의개요__5.4.2모델활성화__5.4.3Pinecone준비__5.4.4S3버킷작성__5.4.5지식기반생성__5.4.6Lambda계층작성__5.4.7Agents작성__5.4.8작업그룹추가__5.4.9Lambda함수설정__5.4.10지식기반추가__5.4.11별칭작성__5.4.12동작확인__5.4.13추적표시__5.4.14OrchestrationStrategy변경▣06장:Bedrock기능활용하기6.1커스터마이징모델__6.1.1커스텀모델이란__6.1.2파인튜닝__6.1.3지속적인사전훈련__6.1.4커스텀모델가져오기6.2세이프가드__6.2.1세이프가드란__6.2.2워터마크감지__6.2.3가드레일6.3평가와도입__6.3.1모델평가__6.3.2프로비저닝된처리량6.4Bedrock기타기능__6.4.1배치추론__6.4.2SageMakerUnifiedStudio의AmazonBedrock▣07장:다양한AWS서비스와Bedrock의연계7.1AmazonCloudWatch와의연계__7.1.1CloudWatch개요__7.1.2CloudWatchMetrics__7.1.3CloudWatchLogs7.2AWSCloudTrail과의연계__7.2.1CloudTrail개요__7.2.2관리이벤트와데이터이벤트7.3AWSPrivateLink와의연계__7.3.1PrivateLink개요__7.3.2생성형AI앱의네트워크설계7.4AWSCloudFormation과의연계__7.4.1CloudFormation개요7.5그외의AWS서비스와의연계__7.5.1AmazonAurora__7.5.2AmazonCodeCatalyst__7.5.3AmazonLex__7.5.4AmazonTranscribe__7.5.5AmazonConnect▣08장:생성형AI앱을로우코드로개발해보자8.1AWSStepFunctions와프롬프트체이닝__8.1.1StepFunctions란__8.1.2통합의종류__8
-