FREE SHIPING FOR OVER $100 - MOSTLY SHIP VIA USPS GROUND ADVANTAGE %D days %H:%M:%S
ChoiSujin
출간작으로『ApplicationofMachineLearningforAnaerobicDigestion』등이있다.
TABLEOFCONTENTSPREFACEiiTABLEOFCONTENTSiiiChapter1.AnaerobicDigestion11.1Introduction11.2BiochemistryandMicrobiology31.2.1Hydrolysis-31.2.2Acidogenesis-41.2.3Acetogenesis41.2.4Methanogenesis51.3ProcessControlofAnaerobicDigestion6Chapter2.StatisticalMethodsinAnaerobicDigestion112.1Multipleregression112.1.1Fundamentalsofmultipleregression122.1.2Responsesurfacemethodology152.1.2.1DesignofexperimentsinAD162.1.2.2Centralcompositedesign172.1.2.3Fullfactorialandfractionalfactorialdesigns222.1.3ApplicationofRSMinADprocesses262.2Multivariateanalysistechniques292.2.1OverviewofmultivariatemethodsinAD292.2.2Principlecomponentanalysis(PCA)322.2.2.1Mathematicalfoundation332.2.2.2ApplicationofPCAinAD342.2.2.3InterpretationofPCAresults352.2.2.4Interpretationofkeyparameters362.2.3Redundancyanalysis-392.2.3.1Linkingenvironmentalparameterstomicrobialcommunities412.2.4PrincipleCoordinateanalysis482.2.4.1Applicationsinsamplecomparisonandclustering512.2.5Non-metricmultidimensionalscaling582.2.5.1Conceptandapplicationinmicrobialcommunityanalysis612.2.6CanonicalCorrespondenceAnalysis682.2.6.1Correlatingmicrobialcommunitiesandprocessperformance71Chapter3.KineticsofMicrobialGrowthandSubstrateUtilization783.1GeneralconceptsofbiokineticsinAD783.1.1Definitionandimportance823.1.2Microbialgrowthcurve833.2ImportanceofBiokineticsinADProcessContro893.3FundamentalKineticModelsinAD963.3.1MonodModel973.3.2HaldaneModel993.3.3ContoisModel1003.3.4Lotka-VolterraModel1023.3.4.1Casestudies:Interactionmodeling1083.4Fundamentalbiokineticequations1113.4.1Massbalanceequationdevelopment1133.4.2Analyticalsolutions1153.4.2.1Solutionforbatchreactors1153.4.2.2SolutionforCSTRs1173.4.3Numericalsolutions1193.4.3.14thorderRunge-KuttaMethod1193.4.3.2Solutionforbatchreactors1213.4.3.3SolutionforCSTRs-1233.5Kineticparameterestimation1253.6Applicationsofbiokineticmodelinginperformanceprediction128Chapter4.ArtificialIntelligence(AI)-basedmethodsinAnaerobicDigestion1314.1GeneralIntroductiontoAI1314.1.1BasicsofAI-1344.1.2AIApproachinAnaerobicDigestion1364.1.3CommonAITasksinAnaerobicDigestionsystems1384.1.3.1Prediction1404.1.3.2Classification1414.1.3.3Clustering1414.1.3.4AnomalyDetection1424.2DescriptionofModelArchitectures1444.2.1MachineLearningAlgorithms1454.2.1.1LinearRegression1474.2.1.2SupportVectorMachine(SVM)1514.2.1.3NaïeBayes1564.2.1.4DecisionTrees1614.2.1.5EnsembleLearningModels1664.2.2NeuralNetworkArchitectures1744.2.2.1Multi-layerPerceptrons(MLP)1754.2.2.2ConvolutionalNeuralNetworks(CNN)1824.2.2.3RecurrentNeuralNetworks(RNN)1944.2.2.4Transformer2064.3TrainingandValidationofModels2194.3.1DataSplitting2224.3.2LearningObjectives2234.3.3ModelOptimization-2254.3.4ValidationandEvaluationofModels229Chapter5.ApplicationofAIinAnaerobicDigestionresearch2345.1Physico-ChemicalData2345.1.1ReactorConfiguration2355.1.2SubstrateCharacteristics2365.1.3EffluentCharacteristics2385.1.4GasPhaseData2395.1.5ApplicationsinAIModeling2415.2QualitativeandQuantitativeMicrobialData2435.2.1QualitativeMicrobialData2445.2.1.1CommunityStructure2445.2.1.2DiversityIndices2455.2.1.3ApplicationsinAIModeling2465.2.2QuantitativeMicrobialData-2485.2.2.1MicrobialQuantificationusingqPCR2495.2.2.2ApplicationsinAIModeling2495.2.3IntegrationofQualitativeandQuantitativeData2505.3ImageData2525.3.1SpectroscopyImage2545.3.1.1ApplicationinInfluentAnalysis2545.3.1.2ApplicationinEffluentAnalysis2545.3.1.3ApplicationsinAIModeling2555.3.2MicroscopyImage2575.3.2.1BiofilmandGranuleAnalysis2585.3.2.2MicrobialCommunityImaging2585.3.2.3ApplicationsinAIModeling2595.4Time-seriesData-2615.4.1CharacteristicsofTime-seriesData2625.4.2PreprocessingRequirementsforAIApplications2635.4.3ApplicationsinAIModeling-264REFERENCES266