
Description
머신러닝 모델의 안정적인 운영과 성공적인 CI/CD를 위한 MLOps 엔지니어링 노하우
* MLOps 포트폴리오 작성 Tip, MLOps 실무자의 인터뷰 수록
* 최신 내용 기반한 역자 노트 추가 및 소스 코드 리팩토링 반영
* MLOps 포트폴리오 작성 Tip, MLOps 실무자의 인터뷰 수록
* 최신 내용 기반한 역자 노트 추가 및 소스 코드 리팩토링 반영
이 책은 MLOps와 DevOps의 개념을 종합적으로 이해하고, 깊이 있는 학습을 돕기 위해 다양한 실습을 포함하고 있습니다. 머신러닝 모델의 안정적인 운영을 위한 배포 방법과 AutoML, 컨테이너, 엣지 컴퓨팅, 모델 이식성 등 MLOps의 중요한 기술 영역을 다룹니다. 뿐만 아니라 AWS, 애저 환경, GCP 등 다양한 클라우드 플랫폼에서의 MLOps 경험을 쌓을 수 있도록 실습을 제공합니다. 저자의 실제 경험을 바탕으로 한 MLOps 사례 및 MLOps 실무자들의 인터뷰 내용도 소개하고 있습니다. 부록에서는 MLOps 구현 시 고려해야 할 사항과 MLOps 커리어 준비를 위한 인터뷰 질문 및 기술 포트폴리오에 필요한 작성 Tip도 제공하여 실무에 쉽게 적용할 수 있도록 도와줍니다.


MLOps 실전 가이드 : DevOps와 MLOps의 이론과 실습부터 클라우드 컴퓨팅, AutoML, 엣지 컴퓨팅까지
$40.00