Description
심층강화학습의 확고한 기반을 다지기 위한 완벽한 방법!
지금 당장 활용할 수 있는 심층강화학습의 이론 및 실무를 소개합니다.
지금 당장 활용할 수 있는 심층강화학습의 이론 및 실무를 소개합니다.
이 책은 이론과 실무적 내용을 독특하게 결합한 심층강화학습 소개서입니다. 직관적인 설명에서 시작하여 심층강화학습 알고리즘에 대한 자세한 설명과 SLM Lab 라이브러리를 이용한 구현 방법으로 이어지고, 마지막으로는 심층강화학습을 실무에 적용하기 위한 세부 내용을 다룹니다.
기본적인 기계학습 개념에 대한 이해와 파이썬을 다룰 줄 아는 컴퓨터과학 전공 학생 및 소프트웨어 엔지니어 모두에게 최선의 선택이 될 것입니다.
주요 내용
□ 심층강화학습 문제의 모든 핵심 내용을 다룹니다.
□ REINFORCE, 사르사(SARSA), DQN, 이중DQN, 우선순위가 있는 경험재현(PER)과 같은 정책-기반 알고리즘과 가치-기반 알고리즘에 대해 알아봅니다.
□ 행동자-비평자(Actor-Critic)와 근위 정책 최적화(PPO)와 같은 결합된 알고리즘에 대해 심도 있게 알아봅니다.
□ 알고리즘이 동기 및 비동기 방식으로 병렬화되는 과정을 이해합니다.
□ SLM Lab에서 알고리즘을 실행해 보고, 심층강화학습을 실무에 적용하기 위한 세부사항들을 학습합니다.
□ 튜닝된 하이퍼파라미터를 사용한 결과를 통해 알고리즘을 탐험합니다.
□ 심층강화학습 환경의 설계 방법을 이해합니다.
기본적인 기계학습 개념에 대한 이해와 파이썬을 다룰 줄 아는 컴퓨터과학 전공 학생 및 소프트웨어 엔지니어 모두에게 최선의 선택이 될 것입니다.
주요 내용
□ 심층강화학습 문제의 모든 핵심 내용을 다룹니다.
□ REINFORCE, 사르사(SARSA), DQN, 이중DQN, 우선순위가 있는 경험재현(PER)과 같은 정책-기반 알고리즘과 가치-기반 알고리즘에 대해 알아봅니다.
□ 행동자-비평자(Actor-Critic)와 근위 정책 최적화(PPO)와 같은 결합된 알고리즘에 대해 심도 있게 알아봅니다.
□ 알고리즘이 동기 및 비동기 방식으로 병렬화되는 과정을 이해합니다.
□ SLM Lab에서 알고리즘을 실행해 보고, 심층강화학습을 실무에 적용하기 위한 세부사항들을 학습합니다.
□ 튜닝된 하이퍼파라미터를 사용한 결과를 통해 알고리즘을 탐험합니다.
□ 심층강화학습 환경의 설계 방법을 이해합니다.
단단한 심층강화학습 : 심층강화학습 기본 개념을 제대로 정리한 인공지능 교과서
$32.16