Description
스파크 창시자 '마테이 자하리아'가 추천하는 스파크 입문서의 결정판!
《러닝 스파크: 번개같이 빠른 데이터 분석》의 제2판이 출간되었습니다.
《러닝 스파크: 번개같이 빠른 데이터 분석》의 제2판이 출간되었습니다.
데이터가 점점 더 커지고 점점 더 빨리 생성되며 다양한 형식으로 제공되면서, 분석이나 머신러닝을 위한 대규모 처리 또한 요구되고 있습니다. 이러한 대규모 워크로드를 효율적으로 처리할 수 있는 대안이 바로 아파치 스파크입니다.
스파크 3.x를 포함하여 업데이트된 이 개정판은 데이터 엔지니어와 데이터 과학자에게 스파크의 구조와 통합이 중요한 이유를 보여줍니다. 간단한 것에서부터 복잡한 것까지 데이터 분석을 수행하고, 머신러닝 알고리즘의 사용 방법을 체계적으로 설명합니다.
단계별 연습, 코드 예제와 노트북 등을 통해 다음을 수행할 수 있습니다.
■ 파이썬, SQL, 스칼라, 자바를 이용한 고차원 정형 API 학습
■ 스파크 작업과 SQL 엔진의 이해
■ 스파크 설정 및 스파크 UI를 사용하여 스파크 작업을 검사, 튜닝, 디버깅
■ JSON, 파퀘이, CSV, 에이브로, ORC, 하이브, S3, 카프카와 같은 데이터 소스에 연결
■ 정형 스트리밍을 사용하여 배치 및 스트리밍 데이터에 대한 분석 수행
■ 오픈소스 델타 레이크 및 스파크로 안정적인 데이터 파이프라인 구축
■ MLlib을 사용하여 머신러닝 파이프라인을 개발하고 MLflow를 사용하여 모델 재생산 및 배포
스파크 3.x를 포함하여 업데이트된 이 개정판은 데이터 엔지니어와 데이터 과학자에게 스파크의 구조와 통합이 중요한 이유를 보여줍니다. 간단한 것에서부터 복잡한 것까지 데이터 분석을 수행하고, 머신러닝 알고리즘의 사용 방법을 체계적으로 설명합니다.
단계별 연습, 코드 예제와 노트북 등을 통해 다음을 수행할 수 있습니다.
■ 파이썬, SQL, 스칼라, 자바를 이용한 고차원 정형 API 학습
■ 스파크 작업과 SQL 엔진의 이해
■ 스파크 설정 및 스파크 UI를 사용하여 스파크 작업을 검사, 튜닝, 디버깅
■ JSON, 파퀘이, CSV, 에이브로, ORC, 하이브, S3, 카프카와 같은 데이터 소스에 연결
■ 정형 스트리밍을 사용하여 배치 및 스트리밍 데이터에 대한 분석 수행
■ 오픈소스 델타 레이크 및 스파크로 안정적인 데이터 파이프라인 구축
■ MLlib을 사용하여 머신러닝 파이프라인을 개발하고 MLflow를 사용하여 모델 재생산 및 배포

러닝 스파크 (아파치 스파크를 이용한 데이터 분석 및 머신러닝 알고리즘)
$32.53