이인석
목차머리말개정판머리말제1장행렬과Gauss소거법1.1.Matrix1.2.GaussianElimination1.3.ElementaryMatrix1.4.EquivalenceClass와Partition제2장벡터공간2.1.VectorSpace2.2.Subspace2.3.VectorSpace의보기2.4.Isomorphism제3장기저와차원3.1.LinearCombination3.2.일차독립과일차종속3.3.VectorSpace의Basis3.4.Basis의존재3.5.VectorSpace의Dimension3.6.우리의철학3.7.Dimension의보기3.8.Row-reducedEchelonForm제4장선형사상4.1.LinearMap4.2.LinearMap의보기4.3.LinearExtensionTheorem4.4.DimensionTheorem4.5.RankTheorem제5장기본정리5.1.VectorSpaceofLinearMaps5.2.기본정리:표준기저의경우5.3.기본정리:일반적인경우5.4.기본정리의결과와우리의철학5.5.ChangeofBases5.6.SimilarityRelation제6장행렬식6.1.AlternatingMultilinearForm6.2.SymmetricGroup6.3.Determinant의정의I6.4.Determinant의성질6.5.Determinant의정의II6.6.Cramer’sRule6.7.AdjointMatrix제7장특성다항식과대각화7.1.Eigen-vector와Eigen-value7.2.Diagonalization7.3.Triangularization7.4.Cayley-HamiltonTheorem7.5.MinimalPolynomial7.6.DirectSum과Eigen-spaceDecomposition제8장분해정리8.1.Polynomial8.2.T-InvariantSubspace8.3.PrimaryDecompositionTheorem8.4.Diagonalizability8.5.T-CyclicSubspace8.6.CyclicDecompositionTheorem8.7.JordanCanonicalForm제9장Rn의RigidMotion2419.1.Rn-공간의DotProduct9.2.Rn-공간의RigidMotion9.3.OrthogonalOperator/Matrix9.4.Reflection9.5.O(2)와SO(2)9.6.SO(3)와SO(n)제10장내적공간10.1.InnerProductSpace10.2.InnerProductSpace의성질10.3.Gram-SchmidtOrthogonalization10.4.StandardBasis對OrthonormalBasis10.5.InnerProductSpace의Isomorphism10.6.OrthogonalGroup과UnitaryGroup10.7.AdjointMatrix와그응용제11장군11.1.BinaryOperation과Group11.2.Group의초보적성질11.3.Subgroup11.4.학부대수학의半11.5.GroupIsomorphism11.6.GroupHomomorphism11.7.CyclicGroup11.8.Group과Homomorphism의보기11.9.LinearGroup제12장Quotient12.1.Coset12.2.NormalSubgroup과QuotientGroup12.3.QuotientSpace12.4.IsomorphismTheorem12.5.TriangularizationII제13장BilinearForm13.1.BilinearForm13.2.QuadraticForm13.3.OrthogonalGroup과SymplecticGroup13.4.O(1,1)과O(3,1)13.5.Non-degenerateBilinearForm13.6.DualSpace와DualMap13.7.Duality13.8.B-Identification13.9.TransposeOperator제14장HermitianForm14.1.HermitianForm14.2.Non-degenerateHermitianForm14.3.H-Identification과AdjointOperator제15장SpectralTheorem15.1.표기법과용어15.2.NormalOperator15.3.SymmetricOperator15.4.OrthogonalOperator15.5.Epilogue제16장Topology맛보기16.1.MatrixGroupIsomorphism16.2.Compactness와Connectedness참고문헌표기법찾아보기찾아보기
출판사서평개정판에서는논리적으로완벽하지못한부분을보강하였고책에는없으나실제강의때언급된설명을추가하였다.특히§5.5의내용을많이보완하였고기존에독자들의요청에따라연습문제를보강하였다.행간소사다리꼴의유일성은더기초적인증명으로대체하여§3.8로옮겼다.또초판제13장의triangularization도matrixsize에관한귀납법증명으로대체하여§7.3으로옮겼고,학부2학년수준에적합하지않아서실제강의에서도생략했던초판의§15.4(“왜nondegenerate인경우만?”...개정판에서는논리적으로완벽하지못한부분을보강하였고책에는없으나실제강의때언급된설명을추가하였다.특히§5.5의내용을많이보완하였고기존에독자들의요청에따라연습문제를보강하였다.행간소사다리꼴의유일성은더기초적인증명으로대체하여§3.8로옮겼다.또초판제13장의triangularization도matrixsize에관한귀납법증명으로대체하여§7.3으로옮겼고,학부2학년수준에적합하지않아서실제강의에서도생략했던초판의§15.4(“왜nondegenerate인경우만?”)는삭제하였다.